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In Proof Complexity one regards propositional proof systems, such as propositional Frege systems or

Resolution, in a general concept as poly-time functions P that map any string π (the P -proof) to a tautology

ϕ (the proven formula), such that for every tautology there is a proof (i.e. the system is complete). The

main question is, whether there exists such a function P , such that for every tautology ϕ there exists a short

(i.e. polynomial in |ϕ|) proof in P for it. As the set of propositional tautologies is NP-complete, this is

equivalent to whether coNP = NP.

After a brief introduction into Proof Complexity, Bounded Arithmetic and their interconnection I intend

to discuss a model-theoretic approach to answer some open questions in this field. To this end, I will

introduce the notion of a polylogarithmic cut, a model that only contains a small fragment of a larger model

of arithmetic. Intuitively, such cuts are models of a stronger theory. This intuition is at least sometimes

justified as we will see the following

Theorem 1. Let N |= V0 and M ⊆ N be the polylogarithmic cut. Then M |= VNC1.

From this result various results in Proof Complexity straightforwardly follow. For example the following

recent simulation result by Filmus, Pitassi and Santhanam follows directly from Theorem 1 by a simple

calculation and the application of the Reflection Principle for Frege.

Theorem 2 ([2]). Every Frege system is sub exponentially simulated by AC0-Frege systems.

Also, from a recent result of Tzameret and me, we can straightforwardly conclude the following separation

theorem between Resolution and AC0
-Frege. To this end first observe that by a result from Chvátal and

Szemerédi [1] Resolution does not admit subexponential proofs of random 3CNF with a variable density

below n1.5−�. The separation then follows from the following theorem, which is an easy corollary of the main

result from [3] and Theorem 1.

Theorem 3. For almost every random 3CNF A with n variables and m = c ·n1,4 clauses, where c is a large
constant, ¬A has subexponentially bounded AC0-Frege proofs.

I will try to motivate these results and then discuss some interesting lines for further research. One
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