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Graph Searching Games

Stephan Kreutzer

Abstract

This chapter provides an introduction to graph searching games, a form of
one- or two-player games on graphs that have been studied intensively in
algorithmic graph theory. The unifying idea of graph searching games is that
a number of searchers wants to find a fugitive on an arena defined by a graph
or hypergraph. Depending on the precise definition of moves allowed for the
searchers and the fugitive and on the type of graph the game is played on,
this yields a huge variety of graph searching games.

The objective of this chapter is to introduce and motivate the main con-
cepts studied in graph searching and to demonstrate some of the central
ideas developed in this area.

1.1 Introduction

Graph searching games are a form of two player games where one player,
the Searcher or Cop, tries to catch a Fugitive or Robber. The study of graph
searching games dates back to the dawn of mankind: running after one
another or after an animal has been one of the earliest activities of mankind
and surely our hunter-gatherer ancestors thought about ways of optimising
their search strategies to maximise their success.

Depending on the type of games under consideration, more recent studies
of graph searching games can be traced back to the work of Pierre Bouger,
who studied the problem of a pirate ship pursuing a merchant vessel, or more
recently to a paper by Parsons [1978] which, according to Fomin and Thi-
likos [2008], was inspired by a paper by Breisch in the Southwestern Cavers
Journal where a problem similar to the following problem was considered:
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suppose after an accident in a mine some workers are lost in the system of
tunnels constituting the mine and a search party is sent into the mine to find
them. The problem is to devise a strategy for the searchers which guarantees
that the lost workers are found but tries to minimise the number of searchers
that need to be sent into the mine. Graph-theoretically, this leads to the fol-
lowing formulation in terms of a game played on a graph which is due to
Golovach [1989]. The game is played on a graph which models the system
of tunnels, where an edge corresponds to a tunnel and a vertex corresponds
to a crossing between two tunnels. The two players are the Fugitive and the
Searcher. The Fugitive, modelling the lost worker, hides in an edge of the
graph. The Searcher controls a number of searchers which occupy vertices
of the graph. The Searcher knows the graph, i.e. the layout of the tunnels,
but the current position of the fugitive is unknown to the Searcher. In the
course of the game the searchers search edges by moving along an edge from
one endpoint to another trying to find the fugitive.

This formulation of the game is known as edge searching. More popular
in current research on graph searching is a variant of the game called node
searching which we will describe now in more detail.

Node Searching

In node searching, both the fugitive and the searchers occupy vertices of
the graph. Initially, the fugitive can reside on any vertex and there are no
searchers on the graph. In each round of the play, the Searcher can lift some
searchers up or place new searchers on vertices of the graph. This can happen
within one move, so in one step the searcher can lift some searchers up and
place them somewhere else. However, after the searchers are lifted from the
graph but before they are placed again the fugitive can move. He can move
to any vertex in the graph reachable from his current position by a path of
arbitrary length without going through a vertex occupied by a searcher re-
maining on the board. In choosing his new position, the fugitive knows where
the searchers want to move. This is necessary to prevent “lucky” moves by
the searchers where they accidentally land on a fugitive. The fugitive’s goal
is to avoid capture by the searchers. In our example above, the fugitive or
lost miner would normally not try to avoid capture. But recall that we want
the search strategy to succeed independent of how the lost miner moves,
and this is modelled by the fugitive trying to escape. If at some point of the
game the searchers occupy the same vertex as the fugitive then they have
won. Otherwise, i.e. if the fugitive can escape forever, then he wins. The
fact that the fugitive tries to avoid capture by a number of searchers has
led to these kind of games being known as Cops and Robber games in the
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literature and we will at various places below resort to this terminology. In
particular, we will refer to the game described above as the invisible Cops
and Robber Game. The name “Cops and Robber game”, however, has also
been used for a very different type of games. We will describe the differences
in Section 1.3.1.

Optimal Strategies

Obviously, by using as many searchers as there are vertices we can always
guarantee to catch the fugitive. The main challenge with any graph searching
game therefore is to devise an optimal search strategy. There are various
possible optimisation goals. One is to minimise the number of searchers
used in the strategy. Using as few searchers as possible is clearly desirable
in many scenarios, as deploying searchers may be risky for them, or it may
simply be costly to hire the searchers. Closely related to this is the question
whether with a given bound on the number of searches the graph can be
searched at all.

Another very common goal is to minimise the time it takes to search the
graph or the number of steps taken in the search. In particular, often one
would want to avoid searching parts of the graph multiple times. Think for
instance of the application where the task is to clean a system of tunnels of
some pollution which is spreading through the tunnels. Hence, every tunnel,
once cleaned, must be protected from recontamination which can only be
done by sealing off any exit of the tunnel facing a contaminated tunnel. As
cleaning is likely to be expensive, we would usually want to avoid having to
clean a tunnel twice. Search strategies which avoid having to clean any edge
or vertex twice are called monotone.

On the other hand, sealing off a tunnel might be problematic or costly
and we would therefore aim at minimising the number of tunnels that have
to be sealed off simultaneously. In the edge searching game described above,
sealing off a tunnel corresponds to putting a searcher on a vertex incident
to the edge modelling the tunnel. Hence, minimising this means using as
few searchers as possible. Ideally, therefore, we aim at a search strategy
that is monotone and at the same time minimises the number of searchers
used. This leads to one of the most studied problems with graph searching
games, the monotonicity problem, the question whether for a particular type
of game the minimal number of searchers needed to catch the fugitive is the
same as the minimal number of searchers needed for a monotone winning
strategy. Monotonicity of a type of games also has close connections to the
complexity of deciding whether k searchers can catch a fugitive on a given
graph – monotone strategies are usually of length linear in the size of the
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graph – and also to decompositions of graphs. As we will see below, for
the node searching game considered above this is indeed the case. The first
monotonicity proof, for the edge searching variant, was given by LaPaugh
[1993] and since then monotonicity has been established for a wide range of
graph searching games.

Monotonicity of graph searching games will play an important part of this
chapter and we will explore this in detail in Section 1.4.

Applications

The goal of graph searching games is to devise a winning strategy for the
searchers that uses as few searchers as possible. The minimal number of
searchers needed to guarantee capture of the fugitive on a particular graph
thereby yields a complexity measure for the graph, which we call the search
width. This measure, obviously, depends on the type of game being consid-
ered. The search width of a graph measures the connectivity of a graph in
some way and it is therefore not surprising that there is a close relationship
between width measures defined by graph searching games and other com-
plexity or width measures for graphs studied in the literature, such as the
tree-width or the path-width of a graph. This connection is one of the driving
forces behind graph searching games and we will explore it in Section 1.6
below.

Graph searching games have found numerous applications in computer
science. One obvious application of graph searching games is to all kinds of
search problems and the design of optimal search strategies. In games with
an invisible fugitive, searching can also be seen as conquering and an optimal
search strategy in this context is a strategy to conquer a country so that at
each point of time the number of troops needed to hold the conquered area
is minimised.

Furthermore, graph searching games have applications in Robotics and the
planning of robot movements, as it is explored, for instance, by Guibas et al.
[1996]. Another example of this type is the use of graph searching games
to network safety as explored by Franklin et al. [2000] where the fugitive
models some information and the searchers model intruders, or infected
computers, trying to learn this information. The goal here is not to design
an optimal search strategy but to improve the network to increase the search
number. Graph searching games have also found applications in the study
of sequential computation through a translation from pebbling games. We
will give more details in Section 1.3.2.

Other forms of graph searching games are closely related to questions in
logic. For instance the entanglement of a graph is closely related to ques-
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tions about the variable hierarchy in the modal µ-calculus, as explored by
Berwanger and Grädel [2004].

See the annotated bibliography of graph searching by Fomin and Thilikos
[2008] for further applications and references.

As different applications require different types of games, it is not surpris-
ing that graph searching games come in many different forms. We will give
an overview of some of the more commonly used variants of games in the
Section 1.3.

Organisation. This chapter is organised as follows. In Section 1.2 we first de-
fine graph searching games in an abstract setting and we introduce formally
the concept of monotonicity. We also explore the connection between graph
searching and reachability games and derive a range of general complexity
results about graph searching games. In Section 1.3 we present some of the
more commonly used variants of graph searching games. The monotonicity
problem and some important tools to show monotonicity are discussed in
Section 1.4. Formalisations of winning strategies for the fugitive in terms of
obstructions are discussed in Section 1.5. We will explore the connections
between graph searching and graph decompositions in Section 1.6. Finally,
in Section 1.7 we study the complexity of deciding the minimal number of
searchers required to search a graph in a given game and we close this chap-
ter by stating open problems in Section 1.8. Throughout the chapter we will
use some concepts and notation from graph theory which we recall in the
appendix.

Acknowledgement. I would like to thank Isolde Adler for carefully proof
reading the manuscript.

1.2 Classifying Graph Searching Games

In the previous section we have described one particular version of graph
searching, also known as the Invisible Cops and Robber games. Possible
variants of this game arise from whether or not the fugitive is invisible, from
the type of graph the game is played on, i.e. undirected or directed, a graph
or a hypergraph, whether the searchers can move freely to any position or
whether they can only move along one edge at a time, whether searchers only
dominate the vertex they occupy or whether they dominate other vertices as
well, whether the fugitive or the searchers can move in every round or only
once in a while, and many other differences. The great variations in graph
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searching games has made the field somewhat confusing. The fact that the
same names are often used for very different games does not help either. In
this section we will introduce some of the main variants of the game and
attempt a classification of graph searching games.

Most variations do not fundamentally change the nature of the game. The
notable exception is between games with a visible fugitive and those where
the fugitive is invisible. Essentially, the game with a visible fugitive is a two-
player game of perfect information whereas games with an invisible fugitive
are more accurately described as one-player games on an (exponentially)
enlarged game graph or as two-player games of imperfect information. This
difference fundamentally changes the notion of strategies and we therefore
introduce the two types of games separately.

1.2.1 Abstract Graph Searching Games

We find it useful to present graph searching games in their most abstract
form and then explain how some of the variants studied in the literature
can be derived from these abstract games. This will allow us to introduce
abstract notions of strategies which then apply to all graph searching games.
We will also derive general complexity results for variants of graph searching
games. Similar abstract definitions of graph searching games have very re-
cently be given by Amini et al. [2009], Adler [2009] and Lyaudet et al. [2009]
for proving very general monotonicity results. Our presentation here only
serves the purpose to present the games considered in this paper concisely
and in a uniform way and we therefore choose a presentation of abstract
graph searching games which is the most convenient for our purpose.

Definition 1.1 An abstract graph searching game is a tuple G :=
(V,S,F , c) where

• V is a set

• S ⊆ Pow(V ) × Pow(V ) is the Searcher admissibility relation and

• F : Pow(V )3 → Pow(V ) is the Fugitive admissibility function and

• c : Pow(V ) → N is the complexity function.

In the following we will always assume that for every X ∈ Pow(V ) there is
an X ′ ∈ Pow(V ) such that (X, X ′) ∈ S. This is not essential but will avoid
certain notational complications in the definition of strategies below as they
otherwise would have to be defined as partial functions.

To give a first example, the invisible Cops and Robber game on a graph
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G introduced in the introduction can be rephrased as as abstract graph
searching game G := (V,S,F , c) as follows.

The set V contains the positions the searchers and the fugitive can occupy.
In our example, this is the set V (G) of vertices of G.

The Searcher admissibility relation defines the possible moves the searchers
can take. As in our example the searchers are free to move from any posi-
tion to any other position, the Searcher admissibility relation is just S :=
Pow(V ) × Pow(V ).

The fugitive admissibility function models the possible moves of the fugi-
tive: if the searchers currently reside on X ⊆ V (G), the fugitive currently
resides somewhere in R ⊆ V and the searchers announce to move to X ′ ⊆ V ,
then F(X, R, X ′) is the set of positions available to the fugitive during the
move of the searchers. In the case of the invisible Cops and Robber game
described above F(X, R, X ′) is defined as

{v ∈ V : there is u ∈ R and a path in G \ (X ∩ X ′) from v to u }

the set of positions reachable from a vertex in R by a path that does not
run through a searcher remaining on the board, i.e. a searcher in X ∩ X ′.

Finally, the complexity function c is defined as c(X) := |X| – the number
of vertices in X. The complexity function tells us how many searchers are
needed to occupy a position X of the Searcher. On graph searching games
played on graphs this is usually the number of vertices in X. However, on
games played on hypergraphs searchers sometimes occupy hyper-edges and
then the complexity would be the number of edges needed to cover the set
X of vertices.

Based on the definition of abstract graph searching games we can now
present the rules for invisible and visible games.

1.2.2 Invisible Abstract Graph Searching Games

Let G := (V,S,F , c) be an abstract graph searching game. In the variant of
graph searching with an invisible fugitive, the searchers occupy vertices in
V . The Fugitive, in principle, also occupies a vertex in V but the searchers
do not know which one. It is therefore much easier to represent the position
of the Fugitive not by the actual position v ∈ V currently occupied by the
fugitive but by the set R of all positions where the fugitive could currently
be. This is known as the fugitive space , or robber space . The goal of the
searchers in such a game therefore is to systematically search the set V so
that at some point the robber space will be empty.

The rules of the invisible abstract graph searching game on G are
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defined as follows. The initial position of the play is (X0 := ∅, R0 := V ),
i.e. initially there are no searchers on the board and the Fugitive can reside
on any position in V .

Let Xi ⊆ V be the current position of the searchers and Ri ⊆ V be the
current fugitive space. If Ri = ∅ then the Searcher has won and the game is
over. Otherwise, the Searcher chooses Xi+1 ⊆ V such that (Xi, Xi+1) ∈ S.
Afterwards, Ri+1 := F(Xi, Ri, Xi+1) and the play continues at (Xi+1, Ri+1).
If the fugitive can escape forever, then he wins.

Formally, a play in G := (V,S,F , c) is a finite or infinite sequence P :=
(X0, R0), . . . such that, for all i, (Xi, Xi+1) ∈ S and Ri+1 := F(Xi, Ri, Xi+1).
Furthermore, if P is infinite then Ri &= ∅, for all i ≥ 0, and if P :=
(X0, R0), . . . , (Xk, Rk) is finite then Rk = ∅ and Ri &= ∅ for all i < k.
Hence, the Searcher wins all finite plays and the Fugitive wins the infinite
plays.

Note that as R0 := V and Ri+1 := F(Xi, Ri, Xi+1), the entire play is
determined by the actions of the Searcher and we can therefore represent
any play P := (X0, R0), . . . by the sequence X0, X1, ... of searcher positions.
Hence, invisible graph searching games are essentially one-player games of
perfect information. Alternatively, we could have defined invisible graph
searching games as a game between two players where the fugitive also
chooses a particular vertex vi ∈ Ri at each round but this information is
not revealed to the searchers. This would yield a two-player game of partial
information. For most applications, however, it is easier to think of these
games as one-player games.

We now formally define the concept of strategies and winning strategies.
As we are dealing with a one-player game, we will only define strategies for
the Searcher.

Definition 1.2 A strategy for the Searcher in an invisible abstract graph
searching game G := (V,S,F , c) is a function f : Pow(V ) × Pow(V ) →
Pow(V ) such that (X, f(X, R)) ∈ S for all X, R ⊆ V .

A finite or infinite play P := (X0, R0), ... is consistent with f if Xi+1 :=
f(Xi, Ri), for all i.

The function f is a winning strategy if every play P which is consistent
with f is winning for the Searcher.

If in a play the current position is (X, R), i.e. the searchers are on the
vertices in X and the Fugitive space is R, then a strategy for the Searcher
tells the Searcher what to do next, i.e. to move the searchers to the new
position X ′.

Note that implicitly we have defined our strategies to be positional strate-
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gies in the sense that the action taken by a player does only depend on
the current position in the play but not on the history. We will see in Sec-
tion 1.2.6 that this is without loss of generality as graph searching games
are special cases of reachability games for which such positional strategies
suffice.

Example: The Invisible Cops and Robber Game

We have already seen how the invisible Cops and Robber game on a graph
G described in the introduction can be formulated as an abstract invisible
Cops and Robber game (V,S,F , c) where V := V (G) is the set of positions,
S := Pow(V )×Pow(V ) says that the cops can move freely from one position
to another and F(X, R, X ′) := {v ∈ V : there is a path in G\ (X ∩X ′) from
some u ∈ R to v }. This game was first described as node searching by
Kirousis and Papadimitriou [1986]. Here the searchers try to systematically
search the vertices of the graph in a way that the space available to the
fugitive shrinks until it becomes empty.

9

7 8

1 3 4 6

2 5

Figure 1.1 Example for an invisible Cops and Robber game

To give an example, consider the graph depicted in Figure 1.1. We will
describe a winning strategy for 4 cops in the invisible cops and robber game.
The first row contains the cop positions and the second row the correspond-
ing robber space.

Xi : {1, 2, 3} {3, 4} {3, 4, 5, 6} {3, 4, 7} {4, 7, 8} {7, 8, 9}
Ri : {4, 5, 6, 7, 8, 9} {5, 6, 7, 8, 9} {7, 8, 9} {8, 9} {9} ∅

Note that we only have used all four cops once, at position {3, 4, 5, 6}. It is
not too difficult to see that we cannot win with 3 cops. For, consider the edge
3, 4 and assume that cops are placed on it. The graph G \ {3, 4} contains
three components, {1, 2}, {5, 6} and {7, 8, 9}. Each of these requires at least
3 cops for clearing but as soon as one of them is cleared the vertices of the
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edge {3, 4} adjacent to a vertex in the component must be guarded until at
least a second component of G \ {3, 4} is cleared. For instance, if we first
clear the triangle {1, 2, 3} then the vertex 3 needs to be guarded until 4 and
7 are clear but then there are not enough cops left to clear the rest of the
graph.

To formally prove that we cannot search the graph with only three cops we
will exhibit structural properties of graphs, called blockages, which guarantee
the existence of a winning strategy for the robber. This leads to the concept
of obstructions and corresponding duality theorems which we will study in
more detail in Section 1.5.

1.2.3 Visible Abstract Graph Searching Games

In this section we describe a variant of graph searching games where the
fugitive is visible to the searchers. This fundamentally changes the nature of
the game as now the searchers can adapt their strategy to the move of the
fugitive. Such graph searching games are now truly two-player games which
necessitates some changes to the concepts of strategies.

In particular, it no longer makes sense to represent the position of the fugi-
tive as a fugitive space. Instead we will have to consider individual positions
of the fugitive.

Given an abstract game G := (V,S,F , c), the rules of the visible abstract
graph searching game on G are defined as follows. Initially, the board is
empty1. In the first round the Searcher first chooses a set X0 ⊆ V and then
the Fugitive chooses a vertex v0 ∈ V .

Let Xi ⊆ V and vi ∈ V be the current positions of the searchers and the
fugitive respectively. If vi ∈ Xi then the Searcher has won and the game is
over. Otherwise, the Searcher chooses Xi+1 ⊆ V such that (Xi, Xi+1) ∈ S.
Afterwards, the fugitive can choose any vertex vi+1 ∈ F(Xi, {vi}, Xi+1). If
there is none or if F(Xi, {vi}, Xi+1) ⊆ Xi+1, then again the Searcher wins.
Otherwise, the play continues at (Xi+1, vi+1). If the fugitive can escape
forever, then he wins.

Formally, a play in G is a finite or infinite sequence P := (X0, v0), . . . such
that (Xi, Xi+1) ∈ S and vi+1 ∈ F(Xi, {vi}, Xi+1), for all i ≥ 0. Furthermore,
if P is infinite then vi &∈ Xi, for all i ≥ 0, and if P := (X0, v0), . . . , (Xk, vk)
is finite then vk ∈ Xk and vi &∈ Xi for all i < k. Hence, the Searcher wins all
finite plays and the Fugitive wins the infinite plays.

We now define strategies and winning strategies for the Searcher. In con-

1 There are some variants of games where the robber chooses his position first, but this is not
relevant for our presentation.
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trast to the invisible case, there is now also a meaningful concept of strategies
for the fugitive. However, here we are primarily interested in searcher strate-
gies but we will come back to formalisations of fugitive strategies later in
Section 1.5.

Definition 1.3 A strategy for the Searcher in a visible abstract graph
searching game G := (V,S,F , c) is a function f : Pow(V ) × V → Pow(V )
such that for all X ⊆ V and v ∈ V , (X, f(X, v)) ∈ S.

A finite or infinite play P := (X0, v0), ... is consistent with f if Xi+1 :=
f(Xi, vi), for all i.

f is a winning strategy if every play P which is consistent with f is
winning for the Searcher.

If in a play the current position is (X, v), i.e. the searchers are on the
vertices in X and the Fugitive is on v, then a strategy for the Searcher tells
the Searcher what to do next, i.e. to move the searchers to the new position
X ′.

Note that implicitly we have defined our strategies to be positional strate-
gies in the sense that the action taken by a player does only depend on
the current position in the play but not on the history. We will see below
that this is without loss of generality as graph searching games are special
cases of reachability games for which such positional strategies suffice. Fur-
thermore, the determinacy of reachability games implies that in any visibly
graph searching game exactly one of the two players has a winning strategy
(see Corollary 1.11).

It is worth pointing out the fundamental difference between strategies for
the visible and invisible case. In the invisible case, a strategy for the Searcher
uniquely defines a play. Therefore, as we have done above, we can represent a
strategy for the Searcher in an invisible graph searching game as a sequence
X0, X1, . . . or Searcher positions.

In the visible case, however, the next searcher position may depend on
the choice of the fugitive. Therefore, a Searcher strategy f in the visible
case can be described by a rooted directed tree T as follows. The nodes t ∈
V (T ) are labelled by cops(t) ⊆ V and correspond to Searcher positions. The
individual edges correspond to the possible robber moves. More formally, the
root r ∈ V (T ) of T is labelled by cops(r) := X0 the initial cop position. For
every v ∈ V \ X0 there is a successor tv such that cops(tv) := f(cops(t), v).
The edge (t, tv) is labelled by v. Now, for every u ∈ F(X0, v, cops(tv)) there
is a successor tu of tv labelled by cops(tu) := f(cops(tv), u). Continuing in
this way we can build up a strategy tree which is finite if, and only if, f is
a winning strategy. More formally, we define a strategy tree as follows.
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Definition 1.4 Let (V,S,F , c) be an abstract visible graph searching
game. An abstract strategy tree is a rooted directed tree T whose nodes t

are labelled by cops(t) ⊆ V and whose edges e are labelled by search(e) ∈ V

as follows.

1 search(e) &∈ cops(s) for all edges e := (s, t) ∈ E(T ).
2 If r is the root of T then for all v ∈ V \ cops(r) there is a successor tv of

r in T and search(r, tv) := v.
3 If t is a node with predecessor s and v := search((s, t)) then for each u ∈

F(cops(s), v, cops(t)) there is a successor tu of t in T so that search(t, vu) :=
u.

Often this tree can be further simplified. Suppose for instance that there is
an edge (s, t) ∈ E(T ) and that there are vertices u1, u2 ∈ F(cops(s), v, cops(t))\
cops(t) such that F(cops(t), u1, X) = F(cops(t), u2, X), for all X ⊆ V (G).
In this case the two vertices u1 and u2 are equivalent in the sense that it
makes no sense for the Searcher to play differently depending on whether the
fugitive moves to u1 or u2 and likewise for the robber. We therefore do not
need to have separate sub-trees corresponding to the two different moves.

Example: The Visible Cops and Robber Game

Let us illustrate the definition of abstract graph searching games. In Sey-
mour and Thomas [1993], a graph searching game called Cops and Robber
Game is considered, where searchers and the fugitive reside on vertices of a
graph G = (V, E). From a position (X, v), where X ⊆ V are the positions of
the searchers and v ∈ V is the current fugitive position, the game proceeds
as follows. The searchers can move freely from position X ⊆ V to any other
position X ′ ⊆ V . But they have to announce this move publicly and while
the searchers move from X to X ′ the fugitive can choose his new position
from all vertices v′ such that there is a path in G from v to v′ not containing
a vertex from X ∩ X ′.

Formulated as an abstract graph searching game, G := (V,S,F , c) we
let V := V (G) and S := Pow(V ) × Pow(V ), indicating that there is no
restriction on the moves of the searchers. The function F is then defined as

F(X, {v}, X ′) := {u ∈ V : there is a path in G \ (X ∩ X ′) from v to u }.

The complexity function c is defined as c(X) := |X|.
To illustrate the game we will show a winning strategy for 3 cops in the

visible Cops and Robber game played on the graph G depicted in Figure 1.1.
Initially the cops go on the vertices {3, 4}. Now the robber has a choice to go
in one of the three components of G \ {3, 4}. If he chooses a vertex in {1, 2}
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then the next cop move is to play {3, 1, 2}. As the cop 3 remains on the board
the robber cannot escape and is trapped. Analogously, if the robber chooses
a vertex in {5, 6} then the cops go to {4, 5, 6}. Finally, suppose the robber
chooses a vertex in {7, 8, 9}. Now the cops have to be a little more careful.
If they would lift up a cop on the board, say the cop on vertex 3 to place it
on 7, then the robber could escape through a path from his current vertex
over the vertex 3 to the component {1, 2, 3}. So the cop on 3 has to remain
on the board and the same for 4. To continue with the winning strategy for
the cops we place the third cop on the vertex 7. Now the robber can only
move to one of 8, 9. We can now lift the cop from 3 and place it on 8, as the
cops remaining on 7 and 4 block all exists from the component containing
the robber. Putting the cop on 7 leaves only vertex 9 for the robber and in
the next move he will be caught by moving the cop from 4 to 9.

Recall that in the invisible graph searching game we needed 4 cops to
catch the invisible robber whereas here, knowing the robber position, allows
us to save one cop. This example also shows that strategies for the cops are
trees rather than just simple sequences of cop positions.

1.2.4 Complexity of Strategies

We now define the complexity of a strategy for the Searcher.

Definition 1.5 Let P := (X0, R0), . . . , where Ri := {vi} in case of visible
games, be a finite or infinite play in a graph searching game G := (V,S,F , c).
The complexity of P is defined as

comp(P) := max{c(Xi) : (Xi, Ri) ∈ P}.

The complexity of a winning strategy f for the Searcher is

comp(f) := max{comp(P) : P is an f -consistent play }.

As outlined in the introduction, the computational problem associated
with a graph searching game is to determine a winning strategy for the
Searcher that uses as few searchers as possible, i.e. is of lowest complexity.

Definition 1.6 Let G := (V,S,F , c) be an abstract graph searching game.
The search-width of G is the minimal complexity of all winning strategies
for the Searcher, or ∞ if the Searcher does not have any winning strategies.

A natural computational problem, therefore, is to compute the search-
width of a graph searching game. More often we are interested in the cor-
responding decision problem to decide, given an abstract graph searching
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game G := (V,S,F , c) and k ∈ N, if there is a winning strategy in G for the
Searcher of complexity at most k. We will usually restrict this problem to
certain classes of graph searching games, such as visible Cops and Robber
games. In these cases we will simply say “the visible Cops and Robber game
has complexity C”. Furthermore, often this problem is further restricted to
games with a fixed number of Searchers.

Definition 1.7 Let k ∈ N. The k-searcher game on G := (V,S,F , c) is
defined as the graph searching game G′ := (V,S ′,F , c) on the restriction of
G to S ′ := {(X, X ′) : (X, X ′) ∈ S and c(X), c(X ′) ≤ k}.

1.2.5 Monotonicity

In this section we formally define the concept of monotone strategies. Let
G := (V,S,F , c) be an abstract graph searching game.

Definition 1.8 A play P := (X0, R0), . . . , where Ri := {vi} in case of
visible graph searching games, is cop-monotone if for all v ∈ V and i ≤
l ≤ j: if v ∈ Xi and v ∈ Xj then v ∈ Xl.

P is robber-monotone if F(Xi, Ri, Xi+1) ⊇ F(Xi+1, Ri+1, Xi+2), for all
i ≤ 0.

A strategy is cop- or robber-monotone if any play consistent with the
strategy is cop- or robber-monotone.

As outlined above, monotone winning strategies have the advantage of
being efficient in the sense that no part of the graph is searched more than
once. In most games, this also means that the strategies are short, in the
sense that they take at most a linear number of steps.

Lemma 1.9 Let G := (V,S,F , c) be an abstract graph searching game with
the property that the robber space does not decrease if the cops do not move.
Then every play consistent with a cop-monotone winning strategy f will end
after at most |V | steps.

Proof Note that by definition of Searcher strategies the move of the searchers
only depends on the current searcher position and the fugitive space or posi-
tion. Hence, from the assumption that no part of the graph is cleared if the
searchers do not move, we can conclude that if at some point the searchers
do not move and the fugitive stands still, the play would be infinite and
hence losing for the searchers.

Therefore, the cops have to move at every step of the game and as they
can never move back to a position they left previously, they can only take a
linear number of steps.
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Almost all games considered in this chapter have the property that no
player is forced to move and therefore, if the searchers do not move, the
fugitive space does not decrease. An exception is the game of entanglement
studied by Berwanger and Grädel [2004] where the fugitive has to move at
every step and therefore it can be beneficial for the searchers not to move.

A similar lemma as before can often be shown for robber monotone strate-
gies as the robber space is non-increasing. However, this would require the
game to be such that there is a bound on the number of steps the cops
have to make to ensure that the robber space actually becomes smaller. In
almost all games such a bound can easily be found, but formalising this in
an abstract setting does not lead to any new insights.

1.2.6 Connection to Reachability Games

In this section we rephrase graph searching games as reachability games and
derive some consequences of this. A reachability game is a game played on
an arena G := (A, V0, E, v0) where (A, E) is a directed graph, V0 ⊆ A and
v0 ∈ A. We define V1 := A \V0. The game is played by two players, Player 0
and Player 1, who push a token along edges of the digraph. Initially the token
is on the vertex v0. In each round of the game, if the token is on a vertex
vi ∈ V0 then Player 0 can choose a successor vi+1 of vi, i.e. (vi, vi+1) ∈ E, and
push the token along the edge to vi+1 where the play continues. If the token
is on a vertex in V1 then Player 1 can choose the successor. The winning
condition is given by a set X ⊆ A. Player 0 wins if at some point the token is
on a vertex in X or if the token is on a vertex in V1 which has no successors.
If the token never reaches a vertex in X or if at some point Player 0 cannot
move anymore, then Player 1 wins. See [Grädel et al., 2002, Chapter 2] for
details of reachability games.

A positional strategy for Player i in a reachability game can be described
as a function fi : Vi → A assigning to each vertex v where the player moves a
successor f(v) such that (v, f(v)) ∈ E. fi is a winning strategy if the player
wins every play consistent with this strategy. For our purposes we need two
results on reachability games, positional determinacy and the fact that the
winning region for a player in a reachability game can be computed in linear
time.

Lemma 1.10 1 Reachability games are positionally determined, i.e. in ev-
ery reachability game exactly one of the players has a winning strategy and
this can be chosen to be positional.

2 There is a linear time algorithm which, given a reachability game (A, V0, E, v0)
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and a winning condition X ⊆ A, decides whether Player 0 has a winning
strategy in the game.

Let G := (V,S,F , c) be a visible graph searching game. We associate with
G a game arena G := (A, V0, E, v0) where

A := Pow(V ) × V ∪
{(X, v, X ′) ∈ Pow(V ) × Pow(V ) × V : (X, X ′) ∈ S}.

Nodes (X, v) ∈ Pow(V ) × V correspond to positions in the graph search-
ing games. A node (X, v, X ′) ∈ Pow(V ) × V × Pow(V ) will correspond to
the intermediate position where the searchers have announced that they
move from X to X ′ and the fugitive can choose his new position v′ ∈
F(X, {v}, X ′). There is an edge from (X, v) to (X, v, X ′) for all X ′ such
that (X, X ′) ∈ S. Furthermore, there is an edge from (X, v, X ′) to (X ′, v′)
for all v′ ∈ F(X, {v}, X ′).

All nodes of the form (X, v) belong to Player 0 and nodes (X, v, X ′) belong
to Player 1. Finally, the winning condition contains all nodes (X, v) which
v ∈ X.

Now, it is easily seen that from any position (X, v) in the graph searching
game, the Searcher has a winning strategy if, and only if, Player 0 has
a winning strategy in G from the node (X, v). Lemma 1.10 implies the
following corollary.

Corollary 1.11 For every fixed k, in every visible graph searching game
exactly one of the two players has a winning strategy in the k-searcher game.

Similarly, for the invisible graph searching game, we define a game arena
G as follows. The vertices are pairs (X, R) where X, R ⊆ V and there is an
edge between (X, R) and (X ′, R′) if (X, X ′) ∈ S and R′ := F(X, R, X ′). All
nodes belong to Player 0. Again it is easily seen that Player 0 has a winning
strategy from node (X, R) in G if, and only if, the Searcher has a winning
strategy in the invisible graph searching game starting from (X, R).

1.3 Variants of Graph Searching Games

In this section we present some of the main variants of games studied in the
literature.
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1.3.1 A Different Cops and Robber Game

Nowakowski and Winkler [1983] and study a graph searching game, also
called Cops and Robber game, where the two players take turns and both
players are restricted to move along an edge. More formally, starting from a
position (X, r), first the Searcher moves and can choose a new position X ′

obtained from X by moving some searchers to neighbours of their current
position. Once the searchers have moved the fugitive can then choose a
neighbour of his current position, provided he has not already been caught.
See Alspach [2006] for a survey of this type of games.

In our framework of graph searching games, this game, played on a graph
G, can be formalised as G := (V,S,F , c) where

• V := V (G)

• A pair (X, X ′) is in S if there is a subset Y ⊆ X (these are the searchers
that move) and a set Y ′ which contains for each v ∈ Y a successor v′ of
v, i.e. a vertex with (v, v′) ∈ E(G), and X ′ ⊆ Y ′ ∪ X \ Y .

• For a triple (X, v, X ′) we define F(X, v, X ′) to be empty if v ∈ X ′ and
otherwise the set of vertices u s.t. u &∈ X ′ and (v, u) ∈ E(G).

• Finally, c(X) := |X| for all X ⊆ V .

We will refer to this type of games as turn-based. Goldstein and Rein-
gold [1995] study turn-based Cops and Robber games on directed graphs
and establish a range of complexity results for variations of this game rang-
ing from Logspace-completeness to Exptime-completeness. Among other
results they show the following theorem.

Theorem 1.12 (Goldstein and Reingold [1995]) The turn-based Cops and
Robber game on a strongly connected digraph is Exptime-complete.

The study of this type of games forms a rich and somewhat independent
branch of graph searching games. To keep the presentation concise, we will
mostly be focusing on games where the two players (essentially) move si-
multaneously and are not restricted to moves of distance one. See Alspach
[2006] and Fomin and Thilikos [2008] and references therein for a guide to
the rich literature on turn-based games.

1.3.2 Node and Edge Searching with an Invisible Fugitive

We have already formally described the rules of the (non turn-based) invisi-
ble Cops and Robber game in Section 1.2.2. This game has been introduced
as node-searching by Kirousis and Papadimitriou [1986] who showed that it
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is essentially equivalent to pebbling games used to analyse the complexity
of sequential computation.

Pebble games are played on an acyclic directed graph. In each step of
a play we can remove a pebble from a vertex or place a new pebble on a
vertex provided that all its predecessors carry pebbles. The motivation for
pebble games comes from the analysis of register allocation for sequential
computation, for instance for computing arithmetical expressions. The ver-
tices of a directed acyclic graph corresponds to sub-terms that have to be
computed. Hence, to compute the value of a term represented by a node t we
first need to compute the value of its immediate sub-terms represented by
the predecessors of t. A pebble on a node means that the value of this node
is currently contained in a register of the processor. To compute a value of
a term in a register the values of its sub-terms must also be contained in
registers and this motivates the rule that a pebble can only be placed if its
predecessors have been pebbled.

Initially the graph is pebble free and the play stops once all vertices have
been pebbled at least once. The minimal number of pebbles needed for
a directed graph representing an expression t is the minimal number of
registers that have to be used for computing t. Kirousis and Papadimitriou
[1986] show that pebble games can be reformulated as graph searching games
with an invisible fugitive and therefore register analysis as described above
can be done within the framework of graph searching games.

In the same paper they show that edge searching and node searching are
closely related. Recall from the introduction that the edge searching game
is a game where the robber resides on edges of the graph. The searchers
occupy vertices. In each move, the searchers can clear an edge by sliding
along it, i.e. if a searcher occupies an endpoint of an edge then he can move
to the other endpoint and thereby clears the edge. As shown by Kirousis and
Papadimitriou [1986], if G is a graph and G′ is the graph obtained from G by
sub-dividing each edge twice, then the minimal number of cops required to
catch the fugitive in the node searching game on G, called the node search
number of G, is one more than the minimal number of searchers required
in the edge searching game on G′, called the edge search number of G′.
Conversely, if G is a graph and G′ is obtained from G by replacing each edge
by three parallel edges, then the edge search number of G′ is one more than
the node search number of G.

LaPaugh [1993] proved that the edge searching game is monotone thereby
giving the first monotonicity proof for a graph searching game. Using the
correspondence between edge searching and node searching, Kirousis and
Papadimitriou [1986] establish monotonicity for the node searching game.
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Bienstock and Seymour [1991] consider a version of invisible graph searching,
called mixed searching, where the searcher can both slide along an edge or
move to other nodes clearing an edge as soon as both endpoints are occupied.
They give a simpler monotonicity proof for this type of games which implies
the previous two results.

A very general monotonicity proof for games with an invisible robber
based on the concept of sub-modularity was given by Fomin and Thilikos
[2003]. We will present an even more general result using sub-modularity in
Section 1.4 below.

Using a reduction from the Min-Cut Into Equal-Sized Subsets prob-
lem, Megiddo et al. [1988] showed that edge searching is NP-complete. Using
the correspondence between edge and node searching outlined above, this
translates into NP-completeness of the node searching variant, i.e. the in-
visible Cops and Robber game defined above.

1.3.3 Visible Robber Games

We have already introduced the visible cops and robber game above. This
game was studied by Seymour and Thomas [1993] in relation to tree-width, a
connection which we will present in more depth in Section 1.6. In this paper
they introduce a formalisation of the robber strategies in terms of screens,
nowadays more commonly referred to as brambles, and use this to prove
monotonicity of the visible cops and robber game. A monotonicity proof
unifying this result and the results obtained for invisible robber games has
been given by Mazoit and Nisse [2008]. We will review this proof method in
Section 1.4 below.

Arnborg et al. [1987] proved by a reduction from the Minimum Cut

Linear Arrangement problem that determining for a given graph the
minimal k such that G can be represented as a partial k-tree is NP-complete.
This number is equal to the tree-width of G and therefore deciding the tree-
width of a graph is NP-complete. We will see in Section 1.6 that the minimal
number of searchers, called the visible search width of G, required to catch
a visible fugitive in the visible Cops and Robber game on a graph G is equal
to the tree-width of G plus one. Hence, deciding the visible search width of
a graph is NP-complete.

1.3.4 Lazy or Inert Fugitives

In the games studied so far the fugitive was allowed to move at every step
of the game. The inert variant of visible and invisible graph searching is
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obtained by restricting the fugitive so that he can only move if a searcher
is about to land on his position. More formally, the inert graph searching
game G := (V,S,F , c) is defined as an abstract graph searching game where
for all X, X ′ ⊆ V and v ∈ V , F(X, v, X ′) = v if v &∈ X ′.
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Figure 1.2 A visible directed reachability game

Consider the directed graph depicted in Figure 1.3.5. An undirected edge
indicates a directed edge in both directions. The graph consists of two cliques
of 3 vertices each which we will call CL := {1, 2, 3} and CR := {7, 8, 9}. An
edge connecting a clique to a specific vertex means that every vertex of the
clique is connected to this vertex. That is, every vertex of Cl has a directed
edge to 4 and 5 and every vertex of CR has a directed edge to every vertex
in CL and also an undirected edge (two directed edges in either direction)
to the vertices 4, 5, 6 in the middle.

On this graph, 5 cops have a winning strategies against the robber as
follows. As every vertex in CR has an edge to every other vertex, the cops
must first occupy all vertices in CR, which takes 3 cops. In addition they
put two cops on 4 and 5. Now the robber has a choice to either move to 6 or
to a vertex in the clique CL. If he goes to CL we lift all cops from CR and
place them on CL capturing the robber as the only escape route from CL is
through the vertices 4 and 5 which are both blocked.

If on the other hand the robber decides to move to 6 then we lift the two
cops from 4 and 5 and place one of them on 6. Now the robber can move to
one of 4 or 5 but whatever he does we can then place the space cop on the
chosen vertex capturing the robber.

Note that this strategy is non-monotone as the robber can reach the ver-
tices 4 and 5 after they have already been occupied by a cop. Kreutzer and
Ordyniak [2008] show that there is no monotone strategy with 5 cops on
this graph showing that the directed reachability game is non-monotone.

This example also demonstrates the crucial difference between games
played on undirected and directed graphs. For, let G be an undirected graph
with some cops being on position X and let R be the robber space, i.e. the
component of G \ X containing the robber. Now, for every Y ⊆ V (G), if
the Cop player places cops on X ∪ Y and then removes them from Y again,
i.e. moves back to position X, then the robber space is exactly the same
space R as before. Intuitively, this is the reason why non-monotone moves
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are never necessary in the undirected cops and robber game. For a game
played on directed graphs, this is not the case as the example above shows.
If X := {6, 7} and Y := CR then once the cops go on X ∪ Y and the robber
has moved to CL, the cops can be lifted from CR without the robber being
able to regain control of the lost vertices.

To see that the two variants of directed graph searching games presented
above are very different consider the class of trees with backedges as studied,
e.g., by Berwanger et al. [2006]. The idea is to take a tree and add an edge
from every node to any of its (direct or indirect) predecessors up to the root.
Then it is easily seen that two searchers suffice to catch a visible fugitive in
the SCC game on these trees but to catch the fugitive in the reachability
game we need at least as many cops as the height of tree. (It might be a good
exercise to prove both statements.) Hence, the difference between the two
game variants can be arbitrarily large. On the other hand, we never need
more searchers to catch the fugitive in the SCC game than in the reachability
game as every move allowed to the fugitive in the latter is also a valid move
in the former.

The visible SCC game has been introduced in connection to directed
tree-width by Johnson et al. [2001]. Barát [2006] studies the invisible reach-
ability game and established its connection to directed path-width. Finally,
the visible reachability game was explored by Berwanger et al. [2006] and
its inert variant by Hunter and Kreutzer [2008]. See also Hunter [2007].

As we have seen above, the visible, invisible and inert invisible graph
searching games as well as their edge and mixed search variants are all
monotone on undirected graphs. For directed graphs the situation is rather
different. Whereas Barát [2006] proved that the invisible reachability game
is monotone, all other game variants for directed graphs mentioned here
have been shown to be non-monotone. For the SCC game this was shown
by Johnson et al. [2001] for the case of searcher monotonicity and by Adler
[2007] for fugitive monotonicity. However, Johnson et al. [2001] proved that
the visible SCC game is at least approximately monotone. We will review
the proof of this result in Section 1.4 below.

The visible reachability game as well as the inert reachability game were
shown to be non-monotone by Kreutzer and Ordyniak [2008].

1.3.6 Games Played on Hypergraphs

Graph searching games have also found applications on hypergraphs. Got-
tlob et al. [2003] study a game called the Robber and Marshal game
on hypergraphs. In the game, the fugitive, here called the robber, occupies
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vertices of the hypergraph whereas the searchers, here called marshals, oc-
cupy hyper-edges. The game is somewhat different from the games discussed
above as a marshal moving from a hyper-edge e to a hyper-edge h still blocks
the vertices in e∩h. In particular, one marshal is enough to search an acyclic
graph, viewed as hypergraph in the obvious way, whereas we always need at
least two cops for any graph containing at least one edge in the visible cops
and robber game.

Formally, give a hypergraph H := (V (H), E(H)) the Robber and Marshal
game on H is defined as GH := (V,S,F , c) where

• V := V (H)∪̇E(H)
• (X, X ′) ∈ S if X, X ′ ⊆ E(H)
• F(X, R, X ′) := ∅ if R &⊆ V (H) or R ⊆ {v ∈ V (H) : ∃e ∈ X, v ∈ e} and

otherwise F(X, R, X ′) := {v ∈ V (H) : there is a path in H from a vertex
u ∈ R to v not going through any vertex in

⋃

X ∩
⋃

X ′

• c(X) := |X|.

Robber and Marshal games have been studied in particular in connec-
tion to hypergraph decompositions such as hypertree-width and generalised
hypertree-width and approximate duality theorems similar to the one we will
establish in Section 1.4.2 and 1.6 have been proved by Adler et al. [2005].

1.3.7 Further Variants

Finally, we briefly comment on further variants of graph searching. Here we
concentrate on games played on undirected graphs, but some of the variants
translate easily to other types of graphs such as digraphs or hypergraphs.

An additional requirement sometimes imposed on the searchers is that at
every step in a play the set of vertices occupied by searchers needs to be con-
nected . This is, for instance, desirable if the searchers need to stay within
communication range. See e.g. Fomin and Thilikos [2008] for references on
connected search.

Another variation is obtained by giving the searchers a greater radius of
visibility. For instance, we can consider the case where a searcher not only
dominates his own vertex but also all vertices adjacent to it. That is, to catch
the robber it is only necessary to trap the robber in the neighbourhood of a
searcher. In particular in the invisible fugitive case, such games model the
fact that often searchers can see further than just their current position, for
instance using torch lights, but they still cannot see the whole system of
tunnels they are asked to search. Such games, called domination games
were introduced by Fomin et al. [2003]. Kreutzer and Ordyniak [2009] study
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complexity and monotonicity of these games and show domination games
are not only algorithmically much harder compared to classical cops and
robber games, they are also highly non-monotone (see Section 1.4.3 below).

Besides graph searching games inspired by applications related to graph
searching, there are also games which fall under the category of graph
searching games but were inspired by applications in logic. In particular,
Berwanger and Grädel [2004] introduce the game of entanglement and its
relation to the variable hierarchy of the modal µ-calculus.

1.4 Monotonicity of Graph Searching

As mentioned before, monotonicity features highly in research on graph
searching games for a variety of reasons. In this section we present some of
the most important techniques that have been employed for proving mono-
tonicity results in the literature.

In Section 1.4.1, we first introduce the concept of sub-modularity, which
has been used (at least implicitly) in numerous monotonicity results, and
demonstrate this technique by establishing monotonicity of the visible cops
and robber game discussed above.

Many graph searching games on undirected graphs have been shown to be
monotone. Other games, for instance many games on directed graphs, are
not monotone and examples showing that searchers can be saved by playing
non-monotonic have been given. In some cases, however, at least approximate
monotonicity can be retained in the sense that there is a function f : N → N

such that if k searchers can win by a non-monotone strategy then no more
then f(k) searchers are needed to win by a monotone strategy. Often f is
just a small constant. Many proofs of approximate monotonicity use the
concept of obstructions. We will demonstrate this technique in Section 1.4.2
for the case of directed graph searching.

1.4.1 Monotonicity by Sub-Modularity

The aim of this section is to show that the visible cops and robber game on
undirected graphs is monotone. The proof presented here essentially follows
Mazoit and Nisse [2008]. We will demonstrate the various constructions in
this part by the following example.

Recall the representation of winning strategies for the Cop player in terms
of strategy trees in Definition 1.4. In this tree, a node t corresponds to a
cop position cops(t) and an out-going edge e := (t, s) corresponds to a
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Figure 1.3 Example graph G for monotonicity proofs.

robber move to a vertex search(e) := v. Clearly, if the cops are on vertices
X := cops(t) and u, v are in the same component of G\X, then it makes no
difference for the game whether the robber moves to u or v, because whatever
the cops do next, the robber can move to exactly the same positions. We
therefore do not need to have two separate sub-trees for u and v and can
combine vertices in the same component. Thus, we can rephrase strategy
trees for the visible cops and robber game as follows. To distinguish from
search trees defined below we deviate from the notation of Definition 1.4
and use robber(e) instead of search(e).

Definition 1.14 Let G be an undirected graph. A strategy tree is a
rooted directed tree T whose nodes t are labelled by cops(t) ⊆ V (G) and
whose edges e ∈ E(T ) are labelled by robber(e) ⊆ V (G) as follows.

1 If r is the root of T then for all components C of G \ cops(r) there is a
successor tC of r in T and robber(r, tC) := V (C).

2 If t is a node with predecessor s and C ′ := robber((s, t)) then for each
component C of G \ cops(t) contained in the same component of G \
(cops(s) ∩ cops(t)) as C ′ there is an edge eC := (t, tC) ∈ E(T ) that
robber(eC) := V (C).

A strategy tree is monotone if for all (s, t), (t, t′) ∈ E(T ) robber(s, t) ⊇
robber(t, t′).

Towards proving monotonicity of the game it turns out to be simpler to
think of the cops and the robber as controlling edges of the graph rather than
vertices. We therefore further reformulate strategy trees into what we will
call search trees. Here, a component housing a robber, or a robber space in
general, will be represented by the set of edges contained in the component
plus the edges joining this component to the cop positions guarding the
robber space. We will next define the notion of a border for a set of edges.

Definition 1.15 Let E be a set. We denote the set of partitions P :=
(X1, . . . , Xk) of E by P(E), where we do allow degenerated partitions,
i.e. Xi = ∅ for some i.
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2 search(e) ∩ clear(t) = ∅ for every edge e := (s, t) ∈ E(T ).

Let t ∈ V (T ) be a node with out-going edges e1, . . . , er. We define

guard(t) := V [new(t)] ∪ δ
(

search(e1), . . . , search(er), clear(t)
)

and the width w(t) of a node t as w(t) := |guard(t)|. The width of a search
tree is max{w(t) : t ∈ V (T )}.

An edge e := (s, t) ∈ V (T ) is called monotone if search(e) ∪ clear(t) =
E(G). Otherwise it is called non-monotone. We call T monotone if all
edges are monotone.

It is not too difficult to see that any strategy tree (T, cops, robber) cor-
responds to a search tree (T,new, search, clear) over the same underlying
directed tree T , where

new(t) := {e = {u, v} ∈ E(G) : u, v ∈ cops(t)}

search(s, t) := {e = {u, v} ∈ E(G) : u ∈ robber(e) or v ∈ robber(e)}

clear(t) := E(G) \
(

new(t) ∪
⋃

(t,t′)∈E(T )

search(t, t′)
)

.

Figure 1.5 shows the search tree corresponding to the strategy tree in Fig-
ure 1.4. Here, the node labels correspond to new(t), e.g. the label “34,36,46”
of the root corresponds to the edges (3, 4), (3, 6) and (4, 6) cleared by ini-
tially putting the cops on the vertices 3, 4, 6. The edge label in brackets,
e.g. (35,36,X) correspond to the clear label of their endpoint. Here, X is
meant to be the set 56, 57, 67 of edges and is used to simplify presentation.
Finally, the edge labels with a grey background denote the search label of
an edge.

Note that for each node t ∈ V (T ) the cop position cops(t) in the strategy
tree is implicitly defined by guard(t) in the search tree. While every strategy
tree corresponds to a search tree, not every search tree has a corresponding
strategy tree. For instance, if there is an edge e := (s, t) ∈ V (T ) in the search
tree such that search(e)∩ clear(t) &= E(G) then this means that initially the
cops are guard(s) with the robber being somewhere in search(e) and from
there the cops move to guard(t). By doing so the cops decide to give up some
part of what they have already searched and just consider clear(t) to be free
of the robber. Everything else is handed over to the robber and will be
searched later. However, the corresponding move from guard(s) to guard(t)
may not be possible in the cops and robber game in the sense that if the cops
were to make this move the robber might have the chance to run to vertices
inside clear(t). Intuitively, the move from guard(s) to guard(t) corresponds
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Definition 1.19 Let E be a set and φ : Pow(E) → N be a function.

1 φ is symmetric if φ(X) = φ(E \ X) for all X ⊆ E.
2 φ is sub-modular if φ(X)+φ(Y ) ≥ φ(X∩Y )+φ(X∪Y ) for all X, Y ⊆ E.

A symmetric and sub-modular function is called a connectivity function .

For our proof here we will work with an extension of sub-modularity to
partitions of a set E.

Definition 1.20 If P := {X1, . . . , Xk} ∈ P(E) is a partition of a set E

and F ⊆ E then we define PXi↑F as

PXi↑F := {X1 ∩ F, ..., Xi−1 ∩ F, Xi ∪ F c, Xi+1 ∩ F, . . . , Xk ∩ F},

where F c := E \ F .

Definition 1.21 Let E be a set. A partition function is a function
φ : P(E) → N. φ is sub-modular if for all P := {X1, . . . , Xk} ∈ P(E), Q :=
{Y1, . . . , Ys} ∈ P(E) and all i, j

φ(P ) + φ(Q) ≥ φ(PXi↑Yj
) + φ(QYj↑Xi

).

It is worth pointing out that the definition of sub-modularity of partition
functions indeed extends the usual definition of sub-modularity as defined
above. For, if P := {X, Xc} and Q := {Y, Y c} are bipartitions of a set E

then

φ(P ) + φ(Q) ≥ φ(PX↑Y c) + φ(QY c↑X)

= φ(X ∪ (Y c)c, Xc ∩ Y c) + φ(Y ∩ X, Y c ∪ Xc)

= φ(X ∪ Y,Xc ∩ Y c) + φ(Y ∩ X, Y c ∪ Xc)

= φ(X ∪ Y, (X ∪ Y )c) + φ(Y ∩ X, (Y ∩ X)c).

Hence, if we set Φ(X) := φ(X, Xc) then this corresponds to the usual notion
of sub-modularity of Φ as defined above.

We show next that the border function in Definition 1.16 is sub-modular.

Lemma 1.22 Let G be a graph and φ(P ) := |δ(P )| for all partitions
P ∈ P(E(G)). Then φ is sub-modular.

Proof Let P := {X1, . . . , Xr} and Q := {Y1, . . . , Ys} be partitions of E :=
E(G). Let 1 ≤ i ≤ r and q ≤ j ≤ s. By rearranging the sets P and Q we
can assume w.l.o.g. that i = j = 1. We want to show that

φ(P ) + φ(Q) ≥ φ(PX1↑Y1) + φ(QY1↑X1)

= |δ(X1 ∪ Y c
1 , X2 ∩ Y1, . . . , Xr ∩ Y1}| +

|δ(Y1 ∪ Xc
1, Y2 ∩ X1, . . . , YS ∩ X1}|.
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We will prove the inequality by showing that if a vertex v ∈ V (G) is
contained in one of the sets δ(PX1↑Y1), δ(QY1↑X1) occurring on the right
hand side, i.e. is contributing to a term on the right, then the vertex is also
contributing to a term on the left. And if this vertex contributes to both
terms on the right then it also contributes to both on the left.

Towards this aim, let v ∈ V (G) be a vertex. Suppose first that v is con-
tained in exactly one of δ(PX1↑Y1) or δ(QY1↑X1), i.e. contributes only to one
term on the right hand side. W.l.o.g. we assume v ∈ δ(PX1↑Y1). If there is
1 ≤ i < j < r such that v is contained in an edge e1 ∈ Xi and e2 ∈ Xj , then
v ∈ δ(P ). Otherwise, v must be incident to an edge e ∈ Y c

1 and also to an
edge f ∈ Xj ∩ Y1, for some j > 1. But then v ∈ δ(Q) as the edge f occurs
in Y1 and the edge e must be contained in one of the Yl, l > 1.

Now, suppose v ∈ δ(PX1↑Y1) and v ∈ δ(QY1↑X1). But then, v is incident
to an edge in e ∈ Xi ∩ Y1, for some i > 1, and also to an edge f ∈ Yj ∩ X1,
for some j > 1. Hence, f ∈ X1 and e ∈ Xi and therefore v ∈ δ(P ) and,
analogously, e ∈ Y1 and f ∈ Yj and therefore v ∈ δ(Q). Hence, v contributes
2 to the left-hand side. This concludes the proof.

We will primarily use the sub-modularity of φ in the following form.

Lemma 1.23 Let G be a graph and P := {X1, . . . , Xk} ∈ P(E(G)) be a
partition of E(G). Let F ⊆ E(G) such that F ∩ X1 = ∅.

If |δ(F )| ≤ |δ(X1)| then |δ(PX1↑F )| ≤ |δ(P )|
If |δ(F )| < |δ(E1)| then |δ(PX1↑F )| < |δ(P )|

Proof By sub-modularity of φ(P ) := |δ(P )| we know that

|δ(P )| + |δ({F, F c})| ≥ |δ(PX1↑F )| + |δ({F ∪ Xc
1, F

c ∩ X1)|.

But, as F ∩ X1 = ∅ we have F ∪ Xc
1 = Xc

1 and F c ∩ X1 = X1. Hence, we
have

|δ(P )| + |δ({F, F c})| ≥ |δ(PX1↑F )| + |δ({X1, X
c
1)|

and therefore

|δ(P )| ≥ |δ(PX1↑F )| +
(

|δ({X1, X
c
1)|− |δ({F, F c})|

)

from which the claim follows.

Monotonicity of the Visible Cops and Robber Game

We are now ready to prove the main result of this section.

Theorem 1.24 The visible cops and robber game on undirected graphs is
monotone.
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As discussed above, the theorem follows immediately from the following
lemma.

Lemma 1.25 Let G be a graph and T be a search tree of G of width k.
Then there is a monotone search tree of G of width k.

Proof Let m := |E(T )|. We define the weight of a search tree T :=
(T,new, search, clear) as

weight(T ) :=
∑

t∈V (T )

|w(t)|

and its badness as

bn :=
∑

e∈E(T )
e non-monotone

m−dist(e)

where the distance dist(e) of an edge e := (s, t) is defined as the distance of
t from the root of T .

Given two search trees T1, T2 we say that T1 is tighter than T2 if w(T1) <

w(T2) or w(T1) = w(T2) and bn(T1) < bn(T2). Clearly, the tighter relation is
a well-ordering.

Hence, to prove the lemma, we will show that if T := (T,new, search, clear)
is a non-monotone search tree of G then there is tighter search tree of G of
the same width as T .

Towards this aim, let e := (s, t) ∈ E(T ) be a non-monotone edge in T .

Case 1. Assume first that |δ(search(e))| ≤ |δ(clear(e))| and let e1, . . . , er be
the out-going edges of t. We define a new search tree T ′ := (T,new′, search′,
clear′) where new′(v) := new(v), clear′(v) := clear(v) for all v &= t and
search′(f) = search(f) for all f &= e and

clear′(t) := E(G) \ search(e)

new′(t) := new(t) ∩ search(e)

search′(ei) := search(ei) ∩ search(e)

By construction, {clear′(t),new′(t), search′(e1), . . . , search
′(er)} form a par-

tition of E(G). Furthermore, for all f := (u, v) ∈ E(T ) we still have
clear(v)∩ search(f) = ∅ and therefore T ′ is a search-tree. We have to show
that it is tighter than T . Clearly, the weight of all nodes v &= t remains
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unchanged. Furthermore, we get

|guard(t)| = |δ
(

clear(t), search(e1), . . . , search(er)
)

∪ V [new(t)]| (1.1)

= |δ(new(t), clear(t), search(e1), . . . , search(er)
)

∪
(

V [new(t)] \ δ(new(t))
)

| (1.2)

= |δ(new(t), clear(t), search(e1), . . . , search(er)
)

| +

|
(

V [new(t)] \ δ(new(t))
)

| (1.3)

≥ |new′(t), δ(clear′(t), search′(e1), . . . , search
′(er)

)

| +

|
(

V [new(t)] ∩ search(e) \ δ(new(t)) ∩ search(e)
)

| (1.4)

= |δ(clear′(t), search′(e1), . . . , search
′(er)

)

∪
(

V [new′(t)] ∩ search(e)
)

|

= |guard′(t)|

The equality between (1.1) and (1.2) follows from the fact that V [new(t)]∩
δ(new(t), clear(t), search(e1), . . . , search(er)

)

= δ(new(t)). The equality of
(1.2) and (1.3) then follows as the two sets are disjoint by construction. The
inequality in (1.4) follows from Lemma 1.23 above.

If |δ(search(e))| > |δ(clear(e))| then the inequality in (1.4) is strict and
therefore in this case we get wT ′(t) < wT (t) and therefore weight(T ′) <

weight(T ).
Otherwise, if |δ(search(e))| = |δ(clear(e))| then the inequality in (1.4) may

not be strict and we therefore only get that wT ′(t) ≤ wT (t) and therefore
weight(T ′) ≤ weight(T ). However, in this case the edge e is now mono-
tone, by construction, and the only edges which may now have become
non-monotone are e1, . . . , er whose distance from the root is larger than the
distance of e from the root. Therefore, the badness of T ′ is less than the bad-
ness of T . This concludes the first case where |δ(search(e))| ≤ |δ(clear(e))|.
Case 2. Now assume |δ(search(e))| > |δ(clear(e))| and let e1, . . . , er be
the out-going edges of s other than e. We define a new search tree T ′ :=
(T,new′, search′) where new′(v) := new(v), clear′(v) := clear(v) for all v &= t

and search′(f) = search(f) for all f &= e and

search′(e) := E(G) \ clear(t)

new′(s) := new(s) ∩ clear(t)

search′(ei) := search(ei) ∩ clear(t) for all 1 ≤ i ≤ r

clear′(s) := clear(s) ∩

(
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We demonstrate the construction in the proof by the search tree in Fig-
ure 1.5. Let s be the root of that tree, with new(s) := {34, 36, 46} and t

be the successor of s with new(t) := ∅. Let e := (s, t). Thus, search(e) :=
{12, 13, 24} and clear(t) := {35, 36, X}, where X := {56, 57, 67}.

Clearly, the edge e is non-monotone as

search(e) ∪ clear(t) := {12, 13, 24, 35, 36, 56, 57, 67} " E(G).

For instance the edge 34 &∈ search(e) ∪ clear(t).
Now, δ(search(e)) := {3, 4} ⊆ V (G) and δ(clear(t)) := {3, 6} and therefore

we are in Case 1 of the proof above. Let e1 be the edge from t to the node
labelled {34, 46} and let e2 be the other out-going edge from t.

We construct the new search tree which is exactly as the old one except
that now

clear′(t) := E(G) \ search(e) = {34, 35, 36, 46, 56, 57, 67}

new′(t) := new(t) ∩ search(e) := ∅

search′(e1) := search(e1) ∩ search(e) := {24}

search′(e2) := search(e2) ∩ search(e) := {12, 13}

The new search tree is shown in Figure 1.6. Note that guard′(t) is now

guard′(t) := V [new′(t)] ∪ δ(clear′(e)) ∪ δ(search′(e1)) ∪ δ(search′(e2))

= ∅ ∪ {3, 4} ∪ {2, 4} ∪ {2, 3}

= {2, 3, 4}.

That is, in the new search tree the cops start on the vertices 3, 4, 6 as be-
fore but now, if the robber moves into the component {1, 2} then they go
to {2, 3, 4} as might be expected. Continuing in this way we would grad-
ually turn the search tree into a monotone search tree corresponding to a
monotone strategy.

Further Applications of Sub-Modularity

Sub-modularity has been used in numerous results establishing monotonic-
ity of graph searching games. A very general application of this technique
has been given by Fomin and Thilikos [2003] where it was shown that all in-
visible graph searching games defined by a sub-modular border function are
monotone. The proof presented above has been given by Mazoit and Nisse
[2008]. More recently, Amini et al. [2009], Lyaudet et al. [2009] and Adler
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is approximately monotone. More formally, if G is a directed graph, then for
all k, if k cops can catch the robber on G then 3k + 2 cops can catch the
robber with a monotone strategy.

The proof of this theorem relies on the concept of a haven, which is a
representation of a winning strategy for the robber. Essentially, the proof
idea is to iteratively construct a monotone winning strategy for 3k +2 cops,
starting from some initial position. If at some point of the construction we
can not extend the monotone winning strategy then this will give us enough
information for constructing a haven of order k showing that the robber can
win against k cops even in the non-monotone game.

Definition 1.28 Let G be a directed graph. A
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safely remove all cops from the board except for those on (Z ∪ (V (C ′)∩ Y ).
But by construction of Z, |V (C ′) ∩ Y | ≤ k and therefore there are at most
k + 1 + k = 2k + 1 cops on the board. Furthermore, V (C) " W as Z ∩W &=
∅. Hence, the robber space has become strictly smaller. We can therefore
continue in this way to define a monotone winning strategy for the cops
unless at some point we have found a haven of order k. This concludes the
proof of Theorem 1.27 as the existence of a haven of order k means that the
robber wins against k cops.

Further Examples

Similar methods as in this example can be employed in a variety of cases.
For instance, for the Robber and Marshal Game on hypergraphs presented
in Section 1.3.6, Adler [2004] gave examples showing that these games are
non-monotone. But again, using a very similar technique as in the previous
proof, Adler et al. [2005] showed that if k Marshals have a winning strategy
on a hypergraph then 3k + 1 Marshals have a monotone winning strategy.

Open Problems

We close this section by stating an open problem. Consider the visible di-
rected reachability game on a directed graph G as defined in Section 1.3.5.
The question whether this game is monotone has been open for a long time.
Kreutzer and Ordyniak [2008] have exhibited examples of games where 3k−1
cops have a wining strategy but at least 4k − 2 cops are needed for a mono-
tone strategy, for all values of k. We have seen the example for the special
case of k = 2 in Section 1.3.5 above.

Similarly, they give examples for the invisible inert directed reachability
game where 6k cops have a winning strategy but no fewer than 7k cops have
a monotone winning strategy, again for all values of k.

However, the problem whether these games are at least approximately
monotone has so far been left unanswered.

Open Problem 1 Are the directed visible reachability and the inert invis-
ible directed reachability game approximately monotone?

1.4.3 Games which are strongly non-monotone

We close this section by giving an example for a class of games which is not
even approximately monotone. Recall the definition of domination games
given in Section 1.3.7. Domination games are played on undirected graphs.
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The searchers and the fugitive occupy vertices but a searcher not only con-
trols the vertex it occupies but also all of its neighbours. Again we can study
the visible and the invisible variant of the game.

Kreutzer and Ordyniak [2009] showed that there is a class C of graphs
such that for all G ∈ C 2 searchers have a winning strategy on G but for
every k ∈ N there is a graph Gk ∈ C such that no fewer than k searchers
are needed for a monotone winning strategy. A similar result has also been
shown for the visible case.

1.5 Obstructions

So far we have mostly studied strategies for the Searcher. However, if we want
to show that k searchers have no winning strategy in a graph searching game
G, then we have to exhibit a winning strategy for the fugitive. The existence
of a winning strategy for the fugitive on a graph searching game played
on an undirected graph G gives a certificate that the graph is structurally
fairly complex. Ideally, we would like to represent winning strategies for the
fugitive in a simple way so that these strategies can be characterised by
the existence of certain structures in the graph. Such structures have been
studied intensively in the area of graph decompositions and have come to
be known as obstructions.

In this section we will look at two very common types of obstructions,
called havens and brambles which have been defined for numerous games.
We will present these structures for the case of the visible cops and robber
game played on an undirected graph.

We have already seen havens for the directed SCC game but here we will
define them for the undirected case.

Definition 1.29 Let G be a graph. A haven of order k in G is a function
h : [V (G)]≤k → Pow(V ) such that for all X ∈ [V (G)]≤k f(X) is a component
of G − X and if Y ⊆ X then h(Y ) ⊇ h(X).

It is easily seen that if there is a haven of order k in G then the robber
wins against k cops on G.

Lemma 1.30 If h is a haven bramble of order k in a graph G then the
robber wins against k cops on G and conversely if the robber has a winning
strategy against k cops then there is a haven of order k in G.

An alternative way of formalising a robber winning strategy is to define
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the strategy as a set of connected sub-graphs. This form of winning strategies
is known as bramble .

Definition 1.31 Let G be a graph and B, B′ ⊆ V (G). B and B′ touch if
B ∩ B′ &= ∅ or there is an edge {u, v} ∈ E(G) with u ∈ B and v ∈ B′.

A bramble in a graph G is set set B := {B1, . . . , Bl} of sets Bi ⊆ V (G)
such that

1 each Bi induces a connected sub-graph G[Bi] and
2 for all i, j, Bi and Bj touch.

The order of B is

min{|X| : X ⊆ V (G) s.t.X ∩ B &= ∅ for all B ∈ B}.

The bramble width bw(G) of G is the maximal order of a bramble of G.

We illustrate the definition by giving a bramble of order 3 for the graph
depicted in Figure 1.1. In this graph, the set

B :=
{

{1, 2, 3}, {7, 8, 9}, {4, 5, 6}
}

forms a bramble of order 3.
It is easily seen that the existence of a bramble of order k yields a winning

strategy for the robber against k cops.
To give a more interesting example, consider the class of grids. A grid is

a graph as indicated in Figure 1.7 depicting a 4 × 5-grid.

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,1) (3,2) (3,3) (3,4) (3,5)

(4,1) (4,2) (4,3) (4,4) (4,5)

Figure 1.7 4 × 5-grid

More generally, a n × m-grid is a graph with vertex set {(i, j) : 1 ≤ i ≤
n, 1 ≤ j ≤ m} and edge set

{
(

i, j), (i′, j′)
)

: |i − i′| + |j − j′| = 1}.

If G is an n×m-grid then its i-th row is defined as the vertices {(i, j) : 1 ≤
j ≤ m} and its j-th column as {(i, j) : 1 ≤ i ≤ n}. A cross in a grid is the
union of one row and one column. For any n×n-grid we can define a bramble
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Bn consisting of all crosses {(s, j) : 1 ≤ j < n} ∪ {(i, t) : 1 ≤ i < n}, where
1 ≤ s, t < n, of the sub-grid induced by the vertices {(i, j) : 1 ≤ i, j ≤ n−1}
together with the sets B := {(n, j) : 1 ≤ j ≤ n} and R := {(i, n) : 1 ≤ i < n}
containing the bottom-most row and the right-most column except the last
vertex of that column.

It is readily verified that this is a bramble. Clearly any pair of crosses
shares a vertex and therefore touches. On the other hand, every cross touches
the bottom row B and also the rightmost column R. Finally, B and L touch
also.

The order of Bn is n + 1. For, to cover every element of Bn we need two
vertices to cover B and R, are they are disjoint and also disjoint from the
other elements in Bn. But to cover the crosses we need at least n−1 vertices
as otherwise there would be a row and a column in the sub-grid of Gn

without the bottom-row and right-most column from which no vertex would
have been chosen. But then the corresponding cross would not be covered.

Grids therefore provide examples of graphs with very high bramble width.
We will show now that this also implies that the number of cops needed to
search the graph is very high. The following is the easy direction of the
theorem below.

Lemma 1.32 If B is a bramble of order k+1 in a graph G then the robber
wins against k cops on G.

Proof We describe a winning strategy for the robber against k cops. Let
X be the initial position of the cops. As the order of B is k + 1, there is at
least one set B ∈ B not containing any cops and the robber can choose any
vertex from this set. Now, suppose that after some steps, the cops are on
X and the robber on a vertex in a set B ∈ B not containing any cop. Now
suppose the cops go from X to X ′. If X ′ does not contain a vertex from B

then the robber does not move. Otherwise, there is a B′ ∈ B not containing
any vertex from X ′ and while the cops move from X to X ′, the robber can
go from his current position in B to a new position in B′ as B and B′ are
connected and touch. This defines a winning strategy for the robber.

The converse of the previous result is also true but much more complicated
to show.

Theorem 1.33 (Seymour and Thomas [1993]) Let G be a graph and k ≥ 0
be an integer. G contains a bramble of order ≥ k if, and only if, no fewer
than k cops have a winning strategy in the visible Cops and Robber game on
G if, and only if, no fewer than k cops have a monotone winning strategy
in the visible Cops and Robber game on G.
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We refrain from giving the proof here and refer to Seymour and Thomas
[1993] (where brambles were called screens) or the excellent survey by Reed
[1997].

The previous result was stated in terms of tree-width rather than winning
strategies for the cops and is often referred to as tree-width duality theo-
rem . A very general way of establishing duality theorems of this form was
studied by Amini et al. [2009], Adler [2009] and Lyaudet et al. [2009] and
by Fomin and Thilikos [2003] for the case of an invisible robber.

1.6 An Application to Graph-Decompositions

As outlined in the introduction, graph searching games have found various
applications in a number of areas in computer science. Among those, their
application in structural graph theory has been a particularly driving force
behind developments in graph searching. We demonstrate this by deriving
a close connection between undirected cops and robber games and a graph
structural concept called tree-width.

The concept of tree-width was developed by Robertson and Seymour [1982
–] as part of their celebrated graph minor project, even though concepts such
as partial k-trees, which subsequently have been shown to be equivalent to
tree-width, were known before.

Definition 1.34 Let G be a graph. A tree-decomposition of G is a pair
T := (T, (Bt)t∈V (T )) where T is a tree and Bt ⊆ V (G) for all t ∈ V (T ) such
that

1 for all v ∈ V (G) the set {t : v ∈ Bt} induces a non-empty sub-tree of T

and
2 for every edge e := {u, v} ∈ E(G) there is a t ∈ V (T ) such that {u, v} ⊆

Bt.

The width w(T ) of T is

w(T ) := max{|Bt| : t ∈ V (T )}− 1.

The tree-width of G is the minimal width of a tree-decomposition of G.

We will frequently use the following notation: if S ⊆ T is a sub-tree of T

then B(S) := {v : v ∈ Bl for some l ∈ V (S)}.
From a graph structural point of view, the tree-width of a graph measures

the similarity of a graph to being a tree. However, the concept also has im-
mense algorithmic applications as from an algorithmic point of view a tree-
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decomposition yields a recursive decomposition of a graph into small sub-
graphs and this allows to use the same dynamic programming approaches
to solve problems on graphs of small tree-width that can be employed on
trees. Determining the tree-width of a graph is NP-complete as shown by
Arnborg et al. [1987], but there is an algorithm, due to Bodlaender [1996],
which, given a graph G computes an optimal tree-decomposition in time
O(2p(tw(G)) · |G|), for some polynomial p. Combining this with dynamic pro-
gramming yields a powerful tool to solve NP-hard problems on graph classes
of small tree-width. See Bodlaender [1997, 1998, 2005] for surveys including
a wide range of algorithmic examples.

To help gaining some intuition about tree-decompositions we establish
some simple properties and a normal form for tree-decompositions. We first
agree on the following notation. From now on we will consider the tree T

of a tree-decompositions to be a rooted tree, where the root can be chosen
arbitrarily. If T is a rooted tree and t ∈ V (T ) then Tt is the sub-tree rooted
at t, i.e. the sub-tree containing all vertices s such that t lies on the path
from the root of T to s.

Lemma 1.35 If G has a tree-decomposition of width k then it has a tree-
decomposition (T, (Bt)t∈V (T )) of width k so that if {s, t} ∈ E(T ) then Bs &⊆
Bt and Bt &⊆ Bs.

Proof Let T := (T, (Bt)t∈V (T )) be a tree-decomposition such that Bs ⊆ Bt

for some edge {s, t} ∈ E(T ). Then we can remove s from T and make all
neighbours of s other than t neighbours of t. Repeating in this way we
generate a tree-decomposition of the same width with the desired property.

Definition 1.36 Let G be a graph. A separation of G is a triple (A, S, B)
of non-empty sets such that A∪S ∪B = V (G) and there is no path in G\S

from a vertex in A to a vertex in B.

Lemma 1.37 Let T := (T, (Bt)t∈V (T )) be a tree-decomposition of a graph
G and let e := {s, t} ∈ E(T ). Let Ts be the sub-tree of T − e containing s

and let Tt be the sub-tree of T − e containing t. Finally, let S := Bs ∩ Bt.
Then (B(Tt) \ S, S, B(Ts) \ S) is a separation in G.

Exercise. Prove this lemma.

Definition 1.38 A tree-decomposition T := (T, (Bt)t∈V (T )) of a graph G is
in normal form if whenever t ∈ V (T ) is a node and C is a component of G\Bt

then there is exactly one successor tC of t in T such that V (C) =
⋃

s∈V (Tt) Bs.
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Lemma 1.39 If G has a tree-decomposition of width k then it also has a
tree-decomposition of width k in normal form.

Proof Let T := (T, (Bt)t∈V (T )) be a tree-decomposition of G. Let t ∈ V (T ).
By Lemma 1.37, for every component C of G \ Bt there is exactly one
neighbour s of t such that V (C) ⊆ B(Ts), where Ts is the component of
T−t containing s. So suppose that there are two components C,C ′ such that
C ∪C ′ ⊆ B(Ts) for some neighbour s of t. Let T ′ be the tree-decomposition
obtained from T as follows. Take an isomorphic copy of Ts rooted at a vertex
s′ and add this as an additional neighbour of t. In the next step we replace
every B(l) by B(l)∩V (C) if l ∈ V (Ts) and by B(l) \V (C) if l ∈ V (Ts′). We
proceed in this way till we reach a tree-decomposition in normal form of the
same width.

The presence of a tree-decomposition of small width in a graph G is a
witness that the graph has a rather simple structure and that its tree-width
is small. But how would a certificate for large tree-width look like? If the tree-
width of a graph is very large than there should be some structure in it that
causes this high tree-width. Such structural reasons for width parameters
to be high are usually referred to as obstructions. It turns out that using a
graph searching game connection of tree-width, such obstructions can easily
be identified as we can use the formalisations of winning strategies for the
robber given in Section 1.5 above.

We aim next at establishing a game characterisation of tree-width in terms
of the visible Cops and Robber game. It is not difficult to see that strategy
trees for monotone winning strategies correspond to tree-decompositions.

Lemma 1.40 Let G be an undirected graph of tree-width at most k + 1.
Then k cops have a monotone winning strategy on G in the visible cops and
robber game. Conversely, if k + 1 cops have a monotone winning strategy in
the visible cops and robber game on G then the tree-width of G is at most k.

Proof Assume first that k + 1 cops have a monotone winning strategy
on G and let T := (T, cops, robber) be a strategy tree witnessing this as
defined in Definition 1.14. As T represents a monotone strategy, we can
w.l.o.g. assume that for each node t ∈ V (T ), cops(t) only contains vertices
that can be reached by the robber. Formally, if t ∈ V (T ) and t1, . . . , tr are its
out-neighbours, then if v ∈ cops(t) there must exist an edge {v, u} ∈ E(G)
with u ∈ robber((t, ti)) for at least one i. Clearly, it is never necessary to put
a cop on a vertex that has no neighbour in the robber space as these cops
cannot be reached by the robber. It is a simple exercise to show that under
this assumption (T, (cops(t))t∈V (T )) is a tree-decomposition of G.
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Towards the converse, let T := (T, (Bt)t∈V (T )) be a tree-decomposition of
G of width at most k. By Lemma 1.39, we can assume that T is in normal
form. But then it is easily seen that (T, cops, robber) with cops(t) := Bt and
robber((t, s)) := B(Ts) \ Bt is a monotone strategy tree, where Ts is the
component of T − (t, s) containing s.

The previous lemma together with the monotonicity of the visible Cops
and Robber game proved in Theorem 1.24 and Theorem 1.33 imply the fol-
lowing corollary. Note that it is the monotonicity of the game that brings
the different concepts – winning strategies, tree-decompositions, obstruc-
tions – together to form a uniform characterisation of tree-width and search
numbers. This is one of the reasons why monotonicity has been studied so
intensively especially in structural graph theory.

Corollary 1.41 For all graphs G: tw(G) = bw(G) = cw(G) − 1, where
bw(G) denotes the bramble width and cw(G) the minimal number of cops
required to win the visible cops and robber game.

A similar characterisation can be given for the invisible Cops and Rob-
ber game. A path-decomposition of a graph G is a tree-decomposition
(T, (Bt)t∈V (T )) of G where T is a simple path. The path-width of a graph
is the minimal width of a path-decomposition of G. Similarly as above we
can show that the path-width pw(G) of a graph is just one less than the min-
imal number of cops required to catch an invisible robber (with a monotone
strategy) on G. The obstructions for path-width corresponding to brambles
are called blockages. See Bienstock et al. [1991] for details.

1.7 Complexity of Graph Searching

In this section we study the complexity of computing the least number of
searchers required to win a given graph searching game. As usual we will
view this as a decision problem asking for a given game and a number k

whether k searchers can catch a fugitive or whether they can even do so
with a monotone strategy.

We have already stated a number of complexity results in Section 1.3. The
aim of this section is to establish much more general results valid for almost
all graph searching games within our framework.

Note that all variations of graph searching games described in this chapter
– as games played on undirected, directed or hypergraphs, inert variants etc.
– can all be described by suitably defining the relation S and the function F
in a graph searching game (V,S,F , c). The only exception is the distinction



44

between visible and invisible fugitives, which cannot be defined in the de-
scription of the game. We can therefore speak about the class C of the Cops
and Robber games played on undirected graphs but have to say explicitly
whether we mean the visible or invisible variant.

We will study the complexity questions both within classical complexity
as well as parameterised complexity. But before we need to agree on the
size of a graph searching game. For this we need to following restriction on
games.

Definition 1.42 A class C of graph searching games is concise if

1 there is a polynomial p(n) such that for every G := (V,S,F , c) ∈ C and
all X ∈ Pow(V ), c(X) ≤ p(|X|) and

2 given X, X ′ ⊆ V the relation S(X, X ′) can be decided in polynomial time
and

3 given X, X ′, R ⊆ V and v ∈ V we can decide in polynomial time whether
v ∈ F(X, R, X ′).

This condition rules out degenerated cases where, e.g., all Searcher posi-
tions have complexity 1. But it also disallows games where deciding whether
a move is possible for any of the players is already computationally very
complex. All graph searching games studied in this chapter are concise.

Definition 1.43 The size |G| of a graph searching game G := (V,S,F , c)
is defined as |V |.

This definition is in line with the intuitive definition of size for, e.g., the
visible cops and robber game where the input would only be the graph, and
therefore the size would be the order or the size of the graph, whereas the
rules of the game are given implicitly.

1.7.1 Classical Complexity Bounds for Graph Searching Games

In this section we present some general complexity bounds for graph search-
ing games in the framework of classical complexity.

Definition 1.44 Let C be a concise class of graph searching games. The
problem Vis-Search Width(C) is defined as

Vis Search Width(C)
Input: G ∈ C and k ∈ N

Problem: Is there a winning strategy for k searchers
on G against a visible fugitive?
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We define Mon Vis Search Width(C) as the problem to decide whether
k searchers have a monotone winning strategy on G.

The corresponding problems Invis Search Width(C) and Mon Invis

Search Width(C) for the invisible variant are defined analogously.

To simplify presentation we will refer to this problem simply as “the visible
graph searching game on C” and likewise for the invisible variant.

Games with a Visible Fugitive

We first consider the case of arbitrary, non-monotone strategies.

Lemma 1.45 Let C be a consider class of graph searching games.

1 The visible graph searching game on C can be solved in exponential time.
2 The k-searcher visible graph searching game on C can be solved in polyno-

mial time.
3 There are examples of visible graph searching games which are Exptime-

complete.

Proof Given G ∈ C construct the game graph G of the corresponding reach-
ability game as defined in Section 1.2.6 above. As C is concise, this graph
is of exponential size and can be constructed in exponential time. We can
then use Lemma 1.10 to decide whether or not the Searcher has a winning
strategy.

If the complexity is restricted to some fixed k, then the game graph is of
polynomial size and therefore the game can be decided in polynomial time.

An example of a visible graph searching game which is complete for
Exptime has been given by Goldstein and Reingold [1995], see Theorem 1.12.

If we are only interested in the existence of monotone strategies, then we
can prove slightly better complexity bounds.

Lemma 1.46 Let C be a concise class of graph searching games.

1 The Searcher-monotone visible graph searching game on C can be solved
in polynomial space.

2 The Searcher-monotone k-searcher visible graph searching game on C can
be solved in polynomial time.

Proof In a Searcher-monotone strategy the Searcher can only make at most
polynomially many steps as he is never allowed to return to a vertex once
vacated. As C is concise, this means that a complete play can be kept in
polynomial space which immediately implies the result.
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If, in addition, the number of searchers is restricted to a fixed k, we can
use a straight forward alternating logarithmic space algorithm for it.

For Fugitive-monotone strategies we can obtain a similar result if the
searchers can move freely. In any Fugitive-monotone game the Fugitive-
space can only decrease a linear number of times. However, a priori we
have no guarantee that in between two positions where the fugitive-space
does decrease, the searchers only need to make a linear number of steps. In
particular, in game variants where the cops can only move along an edge or
where their movement is restricted similar to the entanglement game, there
might be variants where they need a large number of steps before the robber
space shrinks again.

Games with an Invisible Fugitive

Lemma 1.47 Let C be a concise class of graph searching games.

1 The invisible graph searching game on C can be solved in polynomial space.

2 The k-searcher invisible graph searching game on C can be solved in poly-
nomial space.

3 There are examples of games which are Pspace-hard even in the case
where k is fixed.

Proof Recall that a winning strategy for the Searcher in an invisible graph
searching game can be described by the sequence X0, . . . , Xk of searcher
positions. As C is concise, any such position only consumes polynomial space.
We can therefore guess the individual moves of the searcher reusing space
as soon as a move has been made. In this way we only need to store at
most 2 Searcher positions and the fugitive space, which can all be done in
polynomial space.

Clearly, Part 1 implies Part 2. Kreutzer and Ordyniak [2009] show that
the invisible domination game is Pspace-complete even for 2 cops, which
shows Part 3.

Finally, we show that the complexity drops if we only consider monotone
strategies in invisible graph searching games.

Lemma 1.48 Let C be a concise class of graph searching games.

1 The Searcher-monotone invisible graph searching game on C can be solved
in NP.

2 The Searcher-monotone k-searcher visible graph searching game on C can
be solved in NP.
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3 There are examples of invisible graph searching games which are NP-
complete.

Proof In a Searcher-monotone strategy the cop-player can only make at
most polynomially many steps as he is never allowed to return to a vertex
once vacated. As C is concise, this means that a complete strategy for the
Searcher can be kept in polynomial space and therefore we can simply guess
a strategy and then check that it is a winning strategy by playing it. This,
clearly, can be done in polynomial time.

Megiddo et al. [1988] show that the invisible graph searching game is
NP-complete and as this game is monotone Part 3 follows.

The following table summarises the general results we can obtain.

variant visible invisible

k free
non-monotone Exptime Pspace

monotone Pspace NP

k-Searcher
non-monotone Ptime Pspace

monotone Ptime NP

1.7.2 Parameterised Complexity of Graph Searching

Due to their close connection to graph decompositions, graph searching
games have been studied intensively with respect to parameterised com-
plexity. We refer to Downey and Fellows [1998] and Flum and Grohe [2006]
for an introduction to parameterised complexity.

Definition 1.49 Let C be a concise class of graph searching games. The
problem p-Vis Search Width(C) is defined as

p-Vis Search Width(C)
Input: G ∈ C and k ∈ N

Parameter: k

Problem: Is there a winning strategy for k searchers
on G in the visible fugitive game?

p-Vis Search Width(C) is fixed-parameter tractable (fpt) if there
is a computable function f : N → N, a polynomial p(n) and an algorithm
deciding the problem in time f(k) · p(|G|).

The problem is in the complexity class XP if there is a computable func-
tion f : N → N and an algorithm deciding the problem in time |G|f(k).

Analogously we define p-Mon Vis Search Width(C) as the problem to
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decide whether k searchers have a monotone winning strategy on G and the
corresponding invisible fugitive variants.

The correspondence between visible graph searching games and reacha-
bility games immediately implies the following theorem.

Theorem 1.50 Let C be a concise class of abstract graph searching games.
Then the visible graph searching game on C is in XP.

This, however, fails for the case of invisible graph searching games. For in-
stance, Kreutzer and Ordyniak [2009] show that deciding whether 2 searchers
have a winning strategy in the invisible domination game is Pspace-complete
and therefore the problem cannot be in XP unless Pspace=Ptime.

Much better results can be obtained for the visible and invisible Cops and
Robber game on undirected graphs. Bodlaender [1996] presented a linear-
time parameterised algorithm for deciding the tree-width and the path-width
of a graph. As we have seen above, these parameters correspond to the visible
and invisible Cops and Robber game on undirected graphs showing that the
corresponding decision problems are fixed-parameter tractable.

The corresponding complexity questions for directed reachability games,
on the other hand, are wide open.

1.8 Conclusion

The main objective of this chapter was to provide an introduction to the
area of graph searching games and the main techniques used in this context.
Graph searching has developed into a huge and very diverse area with many
problems still left to be solved. Besides specific open problems such as the
approximate monotonicity of directed reachability games in the visible and
invisible inert variant, there is the general problem of finding unifying proofs
for the various monotonicity and complexity results developed in the liter-
ature. Another active trend in graph searching is to extend the framework
beyond graphs or hypergraphs to more general or abstract structures such
as matroids.

Appendix A Notation

Our notation for graphs follows Diestel [2005] and we refer to this book
for more information about graphs. This book also contains an excellent
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introduction to structural graph theory and the theory of tree-width or
graph decompositions in general.

If V is a set and k ∈ N we denote by [V ]≤k the set of all subsets of V of
cardinality at most k. We write Pow(V ) for the set of all subsets of V .

All structures and graphs in this section are finite. If G is a graph we
denote its vertex set by V (G) and its edge set by E(G). The size of a graph
is the number of edges in G and its order is the number of vertices.

If e := {u, v} ∈ E(G) then we call u and v adjacent and u and e inci-
dent .

H is a sub-graph of G, denoted H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆
E(G). If G is a graph and X ⊆ V (G) we write G[X] for the sub-graph of G

induced by X, i.e. the graph (X, E′) where E′ := {{u, v} ∈ E(G) : u, v ∈
X}. We write G \X for the graph G[V (G) \X]. If e ∈ E(G) is a single edge
we write G − e for the graph obtained from G by deleting the edge e and
analogously we write G−v, for some v ∈ V (G), for the graph obtained from
G by deleting v and all incident edges.

The neighbourhood NG(v) of a vertex v ∈ V (G) in an undirected graph
G is defined as NG(v) := {u ∈ V (G) : {u, v} ∈ E(G)}.

A graph G is connected if G is non-empty and between any two u, v ∈
V (G) there exists a path in G linking u and v. A connected component
of a graph G is a maximal connected sub-graph of G.

A directed graph G is strongly connected if it is non-empty and between
any two u, v ∈ V (G) there is a directed path from u to v. A strongly
connected component , or just component , of G is a maximal strongly
connected sub-graph of G.

A clique is an undirected graph G such that {u, v} ∈ E(G) for all u, v ∈
V (G), u &= v.

A tree is a connected acyclic undirected graph. A directed tree is a tree
T such that there is one vertex r ∈ V (T ), the root of T , and every edge of
T is oriented away from r.

Finally, a hypergraph is a pair H := (V, E) where E ⊆ Pow(V ) is a set
of hyperedges, where each hyperedge is a set of vertices. We write V (H)
and E(H) for the set of vertices and hyperedges of H.
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